1. Which function could represent a population that is growing at a rate of 15% per year, t?

A. $P = 1,500(0.85)^t$

C. $P = 0.85(1,500)^t$

(B.) $P = 1,500(1.15)^t$

D. $P = 1.15(1,500)^t$

2. Jenny deposited \$400 into her bank account. The equation $A(t) = 400(1.07)^t$ can be used to calculate the value of her money after t years. What is the annual interest rate she is earning on her deposit?

A. 0.07%

B. 1.07%

(C.)7%

D. 107%

- 3. The function $V(x) = 20,000(0.87)^x$ models the value of a car x years after its purchase. Which **best** describes the rate of change in the value of the car?
 - A. Exponential growth of 87% each year
 - B. Exponential growth of 13% each year
 - C. Exponential decay of 87% each year
 - (D.) Exponential decay of 13% each year
- 4. The function $f(x) = 2,500(0.97)^x$ models the value of an investment after x months. Which statement is true about the value of the investment?
 - A. The value of the investment increases by 3% each month
 - (B.) The value of the investment decreases by 3% each month
 - C. The value of the investment increases by 97% each month
 - D. The value of the investment decreases by 97% each month
- 5. The function $P(x) = 104(1.09)^x$ models the population of blue birds in an area x years after 1980. At what rate is the population of blue birds increasing each year?

A. 4%

(B.) 9%

C. 91%

D. 96%

6. The function $y = 600(1.03)^x$ models the value of a lady's ring x years after its purchase. What percent does the value of the ring increase by each year?

A. 0.03%

B. 1.03%

C. 3.00%

D. 103%